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Option Valuation

What it is and why we care

What makes options unique?

= Options have a non-linear pay-off
= The holder of an option has unlimited
profit potential, but limited downside

potential — for this favorable position, he

must pay a premium to the seller

= The question is: how big should that

premium be?

The Black & Scholes Formula

Basic Formula:

C(S,t) = §8(dy) — Ke " T &(dy)

With:
®(x) */:;%exp(—é)dz
- In(S/K) + (r+ 02 /2)(T — t)
oT —t
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How they are priced — The Black & Scholes Formula

= Introduced by a paper in
1973 by Fischer Black,
Myron Scholes and Robert
Merton

= They received a noble

price in 1997

= Still used nowadays

The flaws of Black & Scholes

= Black & Scholes assumed that an options implied volatility is constant

= Volatility however is “skewed” — it differs across deltas and expirations. This
results in the volatility surface, which reflects everything that B&S fail to
capture in their model

= Therefore: room for improvement
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Reinforcement Learning

Optimizing Optimal Policies in order to maximize rewards in a Markov Decision Process

What is Reinforcement Learning? Agent-Environment Interaction in RL (Markov Decision Process)

= In Reinforcement Learning (RL) the goal is to maximize rewards

= An agent performs an action to transition from on state to a next one and is i Agent ll

given a reward in that next state.

state reward action
= Q-Learning is a RL algorithm where the goal is to learn the optimal policy. A S, R, A
t
policy is a set of rules tot tell the agent what action to take in given state < R .
, _S.. | Environment [e——

= Here the agent choses an action, observes a reward and enters a new state, <

\.

updating Q, the “quality” of the action take at each time t

RL vs Other Al and Machine Learning algorithms Successful Applications of Reinforcement Learning
| [ APhaming ISt luL R 0|
Optimization X X X
Learns from experience X X X X
Generalization X X X X X
Delayed Consequences X X X Atari Games
Exploration X

= SL = Supervised Learning; UL = Unsupervised Learning; RL = Reinforcement
Learning; IL = Imitation Learning
= Reinforcement Learning is provided with censored labels (SL -> correct labels;

UL ->no labels; IL reduces RL to SL) ALPHAGDO
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The Q-Learning Black Scholes pricing model

Reducing the problem of option pricing to rebalancing of a dynamic replicating portfolio

QLBS Reward Function created from replicated portfolio Running 100k simulations per day in order to get the optimal Q-function

= The QLBS model starts with a discrete-time version of BS. To hedge the Simulated stock price S State variable X,

option, the seller replicates portfolio [ made of stock S and deposit B:

120 1
Ht = atSt + Bt
100 -
= The optimal value function is expressed through the optimal option hedging N~ -~
80 1 . . T — T . T . —
and pricing formulated as a Stochastic Optimal Control (SOC) problem: 0 5 10 15 20 25 0 5 10 15 20 25
9 Time Steps Time Steps
Q (Xp.a}) = 1By |Qf 1 (Xeg1.afyy) — MIIZ + My (af (X)) (Agt> ] Optimal action a; Optimal portfolio Mk
0.00 A — <

15 A
—0.25 1

Solving the recursive problem statement through simulation —0.50 4 10 -

=X N A\ \ “ 9 /
] ] ] ] —0.75 4 ’ 5 SN Pran e
= |n practice, the below stated recursion problem is solved in a Monte Carlo 100 \ A\ ~—/ s No? »
— 4. 1 V \/; 0 m
(l) '_:3 1'0 1‘5 2'0 2

Setting, where we simulate N paths for the state variable Xt. 0 5 10 15 20 25 5
= For our project we used Geometric Brownian Motion and the Heston Model Rzu::’;zp;t OptimalTliD”;eg_tfelf:Ction o
= From the simulation we compute a terminal pay-off, which is the dollar amount 501 A 01 Z
an investor receives from the option strategy 257 ) =51
MK -10
Hy(S7) = max(K — Sr, 0) w22 _15 4 \ A
—5.0 A \Y
= Using this terminal value the compute a portfolio and the optimal hedge and 0 5 10 15 20 25 0 5 10 15 20 25
Time Steps Time Steps

backwards update our parameters to converge to the optimal Q function which
= The QLBS option price is given by :

CCEI(S,, ask) = — Q/(Si, a})

results from the optimal action that yields the optimal Reward
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Heston Model

What it is and why do we use it

Key Facts

= Introduced by Steven Heston in 1993

= Volatility is modeled as time-dependent,

stochastic process

= Approximates whole volatility surface

= Computationally intensive

Black Scholes vs. Heston

Black Scholes Model Definition:

dSt = ,LLSt + O'Stth

o = constant

Heston Model Definition:

dSt = ,USt + @Stthl

doy = k(0 — oy)dt + v\/o dW}

where W' and W2 are Brownians Motions

with correlation p

Closed Form Solution

Basic Formula:

C() = S().Hl - C_’.TK. H2
With:

1 1 &) —i.w.In(K). 7} " _
H1=—+—/ Re[e . IST(M.) l)]dw
2 7 Jo L.w. lPlnST(_l)

[+ —iw.In(K) oy
I, = ! - l/ Re [e InST(W)l dw
0

2 b1 I.w

Model Calibration
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https://demonstrations.wolfram.com/VolatilitySurfacelInTheHestonModel/
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https://demonstrations.wolfram.com/VolatilitySurfaceInTheHestonModel/

Backtest
Methodology

Basis for Algorithm

= Every day at close we compare the market price with the g-learning derived

price

= Based on this comparison, we will decide if the option is over or underpriced

and position ourselves accordingly

Market Price —

Our Price

Delta hedging

<0

>0

Risk factors of an option

Long Option

Short Option

The aim of our model is to derive a better price for the option — not to predict the

market

A naked short on the wrong day however might drag down the return of our

portfolio purely due to bad luck

To avoid this scenario, we “delta hedge” our portfolio — i.e. we eliminate the

impact of the underlying on our PnL

t Underlying Delta p&Il
1 10.00 0.50

2 5.00 0.25 2.50
3 10.00 0.50 -1.25

= There are several factors which have an impact on the option price — they are

called the “Greeks”

= Delta refers to the sensitivity of an option to its underlying — i.e. if the

underlying goes up by 1$ tomorrow, how does the price of the option change?

Option Greeks

Spot

Strike

Volatility

Time to Maturity

Rate of Interest
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Results

And further applications

Main Stats Performance overview
le7 Balance change
1020 —— Balance
. (o)
= Total return: 1.55 %
1015
. (o)
= Max drawdown: -0.47 %
1010
= Sharpe ratio : 1.05
1005
1000
Important findings : : : : : : : :
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= Optimization of the simulation approach 50 == Fem
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